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A versatile, fast and unbiased method for
estimation of gene-by-environment interac-
tion effects on biobank-scale datasets

Matteo Di Scipio1,2,10, Mohammad Khan 1,2,10, ShihongMao1, Michael Chong1,3,4,
Conor Judge1, Nazia Pathan 1,2, Nicolas Perrot 1, Walter Nelson 5,6,
Ricky Lali1,7, Shuang Di5,8, Robert Morton1,4, Jeremy Petch 1,2,5,9 &
Guillaume Paré 1,3,4,7

Identification of gene-by-environment interactions (GxE) is crucial to under-
stand the interplay of environmental effects on complex traits. However,
current methods evaluating GxE on biobank-scale datasets have limitations.
We introduce MonsterLM, a multiple linear regression method that does not
rely on model specification and provides unbiased estimates of variance
explained by GxE. We demonstrate robustness of MonsterLM through com-
prehensive genome-wide simulations using real genetic data from 325,989
individuals.We estimate GxE usingwaist-to-hip-ratio, smoking, and exercise as
the environmental variables on 13 outcomes (N = 297,529-325,989) in the UK
Biobank. GxE variance is significant for 8 environment-outcome pairs, ranging
from0.009–0.071. Themajority ofGxE variance involves SNPswithout strong
marginal or interaction associations. We observe modest improvements in
polygenic score prediction when incorporating GxE. Our results imply a sig-
nificant contributionofGxE to complex trait variance andwe showMonsterLM
to be well-purposed to handle this with biobank-scale data.

Identifying gene-by-environment interactions (GxE) is difficult
because individual interaction effects are expected to be small1, the
multiple hypothesis burden is considerable2,3, and the sample sizes
needed are correspondingly large (N > 300,000)4. Many previous
analyses have focused on identifying interactions with variants
marginally associated with a phenotype of interest5,6. Hitherto,
methods developed to estimate the overall effect of these interac-
tions rely on variance componentmethods, due to the predictor (m)
> observation (n) problem, where SNPs (m) vastly outnumber the

participants (n)7,8. These methods are advantageous for smaller
datasets; however, they can be limiting when applied to larger
datasets due to computational burden7. Furthermore, variance
component methods depend on strong assumptions about the
underlying genetic model and often require a priori specification of
parameters and/or hyper-parameters, such as polygenicity, minor
allele frequency (MAF), and linkage disequilibrium (LD)
dependence9–13. While never formally tested in the context of GxE, it
has previously been shown that these assumptions can lead to

Received: 23 April 2021

Accepted: 16 August 2023

Check for updates

1Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences and McMaster University,
Hamilton, ON, Canada. 2Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada. 3Thrombosis and Atherosclerosis
Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, ON, Canada. 4Department of Pathology and Molecular Medicine,
McMaster University,MichaelG. DeGrooteSchool ofMedicine, Hamilton,ON, Canada. 5Centre for Data Science andDigital Health, HamiltonHealthSciences,
Hamilton, ON,Canada. 6Department of Statistical Sciences, University of Toronto, Toronto,ON, Canada. 7Department of Health ResearchMethods, Evidence,
and Impact, McMaster University, Hamilton, ON, Canada. 8Dalla Lana School of Public Health, University of Toronto, Toronto, ON,Canada. 9Institute of Health
Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada. 10These authors contributed equally: Matteo Di Scipio, Mohammad Khan.

e-mail: pareg@mcmaster.ca

Nature Communications |         (2023) 14:5196 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-5076-279X
http://orcid.org/0000-0001-5076-279X
http://orcid.org/0000-0001-5076-279X
http://orcid.org/0000-0001-5076-279X
http://orcid.org/0000-0001-5076-279X
http://orcid.org/0000-0002-2414-8312
http://orcid.org/0000-0002-2414-8312
http://orcid.org/0000-0002-2414-8312
http://orcid.org/0000-0002-2414-8312
http://orcid.org/0000-0002-2414-8312
http://orcid.org/0000-0002-2395-2333
http://orcid.org/0000-0002-2395-2333
http://orcid.org/0000-0002-2395-2333
http://orcid.org/0000-0002-2395-2333
http://orcid.org/0000-0002-2395-2333
http://orcid.org/0000-0002-5216-7617
http://orcid.org/0000-0002-5216-7617
http://orcid.org/0000-0002-5216-7617
http://orcid.org/0000-0002-5216-7617
http://orcid.org/0000-0002-5216-7617
http://orcid.org/0000-0003-1614-1046
http://orcid.org/0000-0003-1614-1046
http://orcid.org/0000-0003-1614-1046
http://orcid.org/0000-0003-1614-1046
http://orcid.org/0000-0003-1614-1046
http://orcid.org/0000-0002-6795-4760
http://orcid.org/0000-0002-6795-4760
http://orcid.org/0000-0002-6795-4760
http://orcid.org/0000-0002-6795-4760
http://orcid.org/0000-0002-6795-4760
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-40913-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-40913-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-40913-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-40913-7&domain=pdf
mailto:pareg@mcmaster.ca


important biases in heritability estimates9–11,14–16. Novel methods are
thus needed to enable fast and unbiased calculations of the variance
explained (R2) by GxE in large samples, on multiple traits and
without the need for genetic model assumptions.

Our proposed method is similar to the generalized random
effects (GRE) model17, building on the observation that the multiple
regression coefficient of determination can be used to accurately
estimate heritability17. Extending this observation to include an
environmental exposure variable and computing the interactions
between genotypes and the environmental exposure allows us to
examine the variance explained by genetic interactions with an
environmental exposure. However, the large number of single
nucleotide polymorphisms (SNPs) (m) compared to participants (n)
presents a challenge for genome-wide analysis18. By partitioning the
genome into non-overlapping regions, it becomes possible to esti-
mate genome-wide interactions with environmental exposures by
reducing m within each region to a size where m < n. Some chal-
lenges remain: First, LD spillage at the junction of blocks can the-
oretically inflate heritability estimates if many such junctions exist9.
Second, any residual population stratification effects would be

amplified if heritability at each region is overestimated and this
effect is expected to be proportional to the number of blocks19.
Third, computing prediction R2 on large blocks with high dimen-
sionality can be slow. By using the conjugate gradientmethod20 with
graphics processing unit (GPU) acceleration21, it is possible to per-
form multiple linear regression modelling efficiently on large
(25,000 SNPs) blocks. Thus, the potential for residual population
stratification effects and LD spills are minimized since only 60
blocks or less are needed for genome-wide analyses and the variants
included are LD-pruned. Furthermore, a block size of no more than
25,000 SNPs also ensures that n > 10m for accurate estimations.

In this work we propose MonsterLM, a method to estimate the
proportion of variance explained by GxE, in a fast, accurate, efficient,
and unbiased manner on biobank-scale datasets (N > 300,000). We
hypothesize that GxE interactions contribute significantly to complex
trait variance. Our objective is to quantify and characterize these
contributions for 13 complex traits using four environmental expo-
sures (waist-to-hip ratio [WHR], smoking, an exercise parameter, and a
randomly generated exposure). We illustrate an overview of our
computational analyses in Fig. 1.

Fig. 1 | Summary of gene-by-environment (GxE) analysis conducted with
MonsterLM. Initial simulation studies were conducted to verify the properties of
MonsterLM. Simulated outcomes with known values for variance explained were
regressed under varying scenarios and model specifications to ensure robust
estimation (blue panel). Real outcome analyses were conducted with UK Biobank
data (grey panels). Genome-wide SNP heritability estimates with andwithout waist-
hip-ratio (WHR) interactions revealed significant interaction effects for 8 of 13
outcomes and were further assessed with a directionality of effects and stratifica-
tion analysis (bottom left panel). MonsterLM properties were further explored
recovering genotype and interaction variance explained through partitioning SNPs

based on genotype and interaction univariate regressions (bottom middle panel).
Lastly, sequential incorporation of subsets of SNPs with significant interaction
associations derived from univariate interaction regressions of the genotype SNPs
on their respective outcomes revealed modest improvements of polygenic scores
in one of the eight outcomes tested (bottom right panel). GenotypeMatrices: Block
partitioning schematic. Base and Collider Models: green circles are outcome vari-
ables; red circles are predictor variables; red squares are colliders; blue circles are
confounders; green arrows are causal associations; grey arrows are unobserved
causal associations. R2

G: Genetic variance; R
2
GE: GxE variance; PG: univariate genetic

association SNPs; PGE : univariate interaction association SNPs.
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Results
Validation of MonsterLM using simulations
We conducted ten genome-wide simulations for each of the 12 sce-
narios (Fig. 2). The true heritability (R2

GW ) was set to 0.20 and the true
interaction variance (R2

GWEI) was set to 0.1 or 0.0. MonsterLM accu-
rately and precisely estimated the true R2

GWEI across all 12 scenarios
(Fig. 2). Under the null scenarios of no GxE, the estimated R2

GWEI was
not different from zero (p >0.05) in all ten simulations. Furthermore,
observed precision estimates (i.e. variance of estimates across the
12 simulations) did not significantly differ from the precision estimates
predicted from Eqs. (8)–(11) (Supplementary Table 1).

MonsterLM accurately detected G and GxE null and non-null
effects when R2

GWEI was set to 0.0 or 0.1, with R2
GW fixed at 0.20

(Fig. 2; scenario 1–2). These results remained when a true causal effect
of Esim on Ysim (R2

E on Y = 0.1) was simulated (Fig. 2; scenario 3). Mon-
sterLM also remained unbiased to varying distributions of GxE effects,
where non-zero GxE effects (i.e. βGE ≠0) were sampled from expo-
nential and beta (positive kurtosis) distributions (Fig. 2; scenario 6–7).
Accurate GxE estimations were observed in the four scenarios
including collider biases (Fig. 2; scenario 9–12). Accurate G estimations
were observed in all collider scenarios except when exposure herit-
ability was heterogeneous (Fig. 2; scenario 9–12).

To assess the robustness ofMonsterLM to LD, SNPswith non-zero
GxE effects were exclusively selected from SNPs in the highest quartile
of LDscore or from SNPs in the highest quartile of LDscore and lowest
quartile of MAF (Fig. 2; scenario 4–5). No significant bias in G or GxE

was observed. We further stratified SNPs into 20 bins based on MAF
and LD, and individually tested each stratum for G and GxE effects.
Each stratum provided consistent estimates (after adjusting for the
number of SNPs), further confirming the robustness of MonsterLM to
MAF and LD (Supplementary Table 2).

Simulation estimates remained unbiased with dichotomous
exposures (Fig. 2; scenario 7) and dichotomous outcomes (Supple-
mentaryTable 3) when applyingMonsterLMwith themodifications for
dichotomous variables outlined in the methods.

Lastly, the performance of MonsterLM was tested in simula-
tions where missing exposures or outcomes were mean imputed.
Using the settings of scenario 2, the GxE estimate was biased
towards the null when 20% of the exposure or 20% of the outcome in
randomly chosen individuals were mean imputed (Supplementary
Table 4). However, if 20% of the exposure and 20% of the outcome
were missing in the same individuals and subsequently mean
imputed, then the GxE estimates were inflated (Supplementary
Table 4). Hence, all analyses using real data were performed on
participants with no missing data.

MonsterLM power was evaluated with simulations for R2
GWEI

varying from 0.005 to 0.50 and sample sizes ranging from 50,000
to 400,000 participants (Supplementary Fig. 1). MonsterLM reliably
detects G and GxE effects with a minimum of 80% power when
N > 100,000 participants and the true R2 > 0.05. At a biobank sam-
ple size of 325,000, MonsterLM is well powered to detect
true R2 > 0.01.

Fig. 2 | Estimation of variance explained by GxE for 12 simulated scenarios.
Estimation of variance explained by GxE for 12 genome-wide scenarios from
10 simulations.“None” indicates the absence of a condition.Model: with or without
collider features. Dashed red lines indicate true set G (R2

GW) variance and dashed
blue lines indicate true set GxE variance (R2

GWEI). βGE Conditions: LD >Q3: all βGE

effects were sampled from GxE effect SNPs in the highest LD quartile;MAF <Q1: all
βGE effects were sampled from GxE effect SNPs in the lowest MAF quartile; sam-
pling distribution for βGE other than ~N(0,1) is denoted; R2

E on Y: outcome variance
explained by exposure; E continuous unless otherwise stated; E Heritability: addi-
tive or heterogeneous. Scenario conditions toggle these parameters: (i) estimation
in the null base scenario (R2

GWEI =0), (ii) estimation in the non-null base scenario
(R2

GWEI =0.1), (iii) estimation when the exposure variance is raised to 0.1, (iv)
estimation when βGE is sampled from LD SNPs >Q3, (v) estimation when βGE is
sampled from LD SNPs > Q3 and MAF SNPs <Q1, (vi–vii) estimation when the

assumptions of standardization for βGE effects were invalidated by generating
effects with exponential and beta distributions (positive kurtosis), (viii) estimation
in scenario (i) but using a dichotomous generated Esim, (ix) estimation in the col-
lider scenario where βGE and βG effects were randomly selected, (x) estimation in
the collider scenario where βGE effects were not an element (completely non-
overlapping) of βG effects, (xi) estimation in the collider scenario where βGE effects
are a strict subset (completely overlapping) of βG effects, and (xii) estimation in the
collider scenario where simulated exposures are heritable through additive and
heterogenous genetic effects. Means and 95% confidence intervals are represented
by dot and whisker plots per scenario. Each black dot represents a single genome-
wide simulation. Simulations were based on quality controlled UKB data consisting
of 325,989 individuals and 1,030,579 SNPs. Source data are provided as a Source
Data file.
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Genome-wide interaction and heritability estimation in the UK
Biobank
We applied MonsterLM to estimate the GxE variance between three
environmental exposures (WHR, days of at least 10minutes moderate
physical activity status [M10], and smoking status) and ten cardiome-
tabolic blood biomarkers (Apolipoprotein A, Apolipoprotein B, Total
Cholesterol, CRP, Glucose, HbA1c, HDL-Cholesterol, LDL-Cholesterol,

Triglycerides, Total Bilirubin), twocardiometabolicdiseases (Coronary
Artery Disease [CAD] and Type 2 Diabetes [T2D]), and height. Of the 13
outcomes, we observed significant GxE with WHR for 8 outcomes
(R2

GWEI ranging from 0.009 to 0.071), significant GxE with M10 for 7
outcomes (R2

GWEI ranging from 0.010 to 0.045), and no significant GxE
with smoking for any outcomes (Fig. 3a; Tables 1 and 2). The strongest
GxEwithWHRwasobserved for CRP (R2

GWEI =0.071) and strongest GxE
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Fig. 3 | Estimates of genetic, interaction, and environment (WHR) R2. Estimates
were computed for eleven outcomes with associated directionality of effects using
the MonsterLM methodology. a Genetic, interaction, and environment (WHR)
variance estimated R2 for each outcome using the MonsterLM protocol. Estimates
and 95% confidence intervals are represented by dot and whisker plots. b The
directionality of effects for derived interaction estimates. SNPs were filtered based
on univariate PG, PGE and LD (r2 < 0.1) for each outcome. Directionality is

concordant when β̂G and β̂GE have the same sign (+/+, −/−) and discordant when
they have opposite signs (+/−, −/+). Two-proportion Z-tests were used to compare
each directionality result with a null value of 0.5. Two-sided significance was
defined as p <0.05. Directionality was computed only for significant outcomes.
Estimates were conducted with 325,989 individuals and 1,030,579 SNPs after
quality control. Source data are provided as a Source Data file.
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with M10 was observed for LDL-Cholesterol (R2
GWEI = 0.045). For some

outcomes, interactions explained a substantial fraction of variance
relative to heritability. For example, GxE with WHR explained 33% and
27% as much variance in Triglycerides and CRP as its estimated herit-
ability, respectively. Generally, GxE with M10 results displayed con-
sistent albeit attenuatedR2

GWEI comparedwith GxEwithWHR (Table 1).
No significant GxE variance was observed for dichotomous outcomes
CAD and T2D (Table 2) nor for randomly permuted exposures for all
outcomes (Tables 1 and 2).

Outcomeheritability estimates for all 13 traits were significant and
largely consistent with published estimates and othermethods (BOLT,
mtg2, and GRE; Tables 2 and 3). For two dichotomous outcomes, CAD
and T2D (Table 2), genetic variance was estimated at 0.181 and 0.659,
respectively, on the liability scale,which is consistentwith the reported
heritability of these diseases in literature22–25. As MonsterLM adjusts
outcomes for each specific exposure tested and this could potentially
impact heritability estimates (which do not necessarily require such
exposure adjustments) the analysis was repeated without adjustment,
with consistent results (Supplementary Table 5).

Follow-up analyses for GxE with WHR were performed to further
observe components of the method. We observed significant direc-
tionality for interaction effects at both univariate marginal and inter-
action association p-values, PG and PGE , formultiple p-value thresholds
(<10−3, <10−2, <10−1, and <1; Fig. 3b; Supplementary Figure 2). That is,
signs of β̂G and β̂GE were the same (+/+ or −/−) more often than
expected in the null condition (>50%) formost outcomes when sorted
by PG and PGE . Consistent with the directionality concordance for each
outcome at PG < 1 and PGE < 1, Pearson correlation coefficients of
estimated genetic regression coefficients for each outcome, β̂1x m (m is
the number of SNPs: 1,030,579), were significant for all outcomes in
Fig. 3b for β̂G and β̂GE (Supplementary Table 6). When extending the
Pearson correlation tests to estimated genetic regression coefficients
from WHR heritability (WHR heritability; Supplementary Table 5),
β̂h2

WHR
, neither β̂G or β̂GE were significantly correlated with β̂h2

WHR
for

almost all outcomes (SupplementaryTable6). To assess the uniformity
of the contribution of SNPs to both G and GxE, we stratified SNPs into
twenty categories based on MAF and LDscore (Supplementary
Table 2). The average SNP contribution to G and GxE did notmarkedly
differ by MAF or LDscore, confirming the absence of large differences
in contribution (Supplementary Fig. 3).

Comparison with other methods
Heritability estimates were largely consistent between MonsterLM,
BOLT, mtg2, and GRE (Table 3). One notable exception was for total
bilirubin, for which heritability was overestimated by GRE
(R2

GW > 0.99) relative to MonsterLM (R2
GW =0.40), BOLT

(R2
GW = 0.37) and mtg2 (R2

GW =0.43). mtg2 and LDSC heritability
estimates were lower compared to MonsterLM, Bolt, and GRE for all
compared outcomes except total bilirubin (with mtg2).

MonsterLM GxE estimates with WHR were compared to mtg2
and LDSC (Table 3). The mtg2 analysis was limited to 75,000 indi-
viduals due to computational constraints. GxE estimates were
consistent between MonsterLM and mtg2 for cholesterol, height,
and total bilirubin. However, glucose and HbA1c had considerably
higher GxE estimates withmtg2 compared toMonsterLM (0.210 and
0.139 in mtg2, versus 0.00475 and 0.00884 in MonsterLM). Mon-
sterLM heritability estimates of glucose and HbA1c were more
consistent with Bolt and GRE versus mtg2 (0.105 and 0.289 in
MonsterLM, versus 0.045 and 0.129 inmtg2). The LDSCGxE analysis
used the full participant list, SNP set, and phenotypic data as in
MonsterLM. GxE estimates were lower than MonsterLM for all
outcomes.

The comparison between MonsterLM and mtg2 was further
extended to simulated outcomes and exposures, with ten simulations
split between true set R2

GWEI =0:10 and R2
GWEI =0 (Supplementary

Table 7). MonsterLM accurately estimated the true interaction var-
iance explained in all ten simulations. mtg2 was accurate in most
simulations but overestimated the set interaction variance in three

Table 1 | Real data estimates for continuous outcomes with MonsterLM

Trait Additive genetic variance
(95% CI)

WHR GxE variance
(95% CI)

M10 GxE variance
(95% CI)

Smoking GxE variance
(95% CI)

Permuted exposure GxE
(95% CI)

Apolipoprotein A 0.281 (0.271, 0.290) 0.0236 (0.014, 0.033) 0.007 (−0.003, 0.017) 0.000739 (−0.0193, 0.0207)−0.0027 (−0.0127, 0.0073)

Apolipoprotein B 0.219 (0.210, 0.228) 0.0242 (0.016, 0.033) 0.040 (0.030, 0.050) 0.00984 (−0.0102, 0.0298) −0.0038 (−0.0134, 0.0062)

Total Cholesterol 0.179 (0.170, 0.188) 0.0183 (0.010, 0.027) 0.042 (0.032, 0.052) 0.00505 (−0.0150, 0.0251) 0.0000 (−0.0099, 0.0099)

CRP 0.238 (0.229, 0.247) 0.0711 (0.063, 0.080) 0.028 (0.018, 0.038) 0.0100 (−0.010, 0.030) −0.0022 (−0.0122, 0.0078)

Glucose 0.105 (0.096, 0.115) 0.00475 (−0.004, 0.014) 0.003 (−0.007, 0.013) 0.00776 (−0.0122, 0.0278) −0.0007 (−0.0106, 0.0092)

HDL-Cholesterol 0.313 (0.303, 0.323) 0.0380 (0.029, 0.047) 0.010 (0.001, 0.020) −0.00234 (−0.0223, 0.0177) −0.0020 (−0.0120, 0.0080)

HbA1c 0.289 (0.280, 0.299) 0.00884 (0.000, 0.018) 0.013 (0.003, 0.023) 0.00610 (−0.0139, 0.0261) −0.0010 (−0.0110, 0.0006)

Height 0.683 (0.674, 0.694) 0.00136 (−0.007, 0.010) 0.0047 (−0.005, 0.015) −0.00124 (−0.0212, 0.0188) −0.0013 (−0.0089, 0.0063)

LDL-Cholesterol 0.173 (0.164, 0.182) 0.0194 (0.011, 0.028) 0.045 (0.035, 0.055) 0.00825 (−0.0118, 0.0283) 0.0014 (−0.0085, 0.0114)

Triglycerides 0.205 (0.196, 0.213) 0.0680 (0.061, 0.077) 0.024 (0.014, 0.034) 0.00696 (−0.0130, 0.0270) −0.0006 (−0.0106, 0.0094)

Total Bilirubin 0.399 (0.389, 0.408) 0.000634
(−0.008, 0.009)

0.002 (−0.007, 0.012) 0.00498 (−0.0150, 0.0250) −0.0019 (−0.0119, 0.0081)

MonsterLM real data results for continuousoutcomes. Presentedare real data estimates for continuous outcomes.All estimatesareperformedusing theMonsterLMmethodology. Exposures include
waist-hip-ratio (WHR), number of days of 10minutes moderate exercise (M10), dichotomous smoking status (Smoking), and permuted exposure (Epm). Bolded estimates are significant.

Table 2 | Real data estimates for dichotomous outcomes with MonsterLM

Trait Additive genetic variance
(95% CI)

WHR GxE variance (95% CI) M10 GxE variance (95% CI) Permuted exposure GxE (95%CI)

Type 2 diabetes 0.659 (0.562, 0.755) −0.0015 (−0.0385, 0.0355) 0.0173 (−0.00265, 0.0378) −0.0201 (−0.0721, 0.0319)

Coronary artery disease 0.181 (0.144, 0.218) −0.0057 (−0.0407, 0.0293) −0.0105 (−0.0405, 0.0101) −0.0331 (−0.0785, 0.0123)

MonsterLM real data results for dichotomous outcomes. Presented are real data estimates for dichotomous outcomes. All estimates are performed using the MonsterLMmethodology. Exposures
include waist-hip-ratio (WHR), number of days of 10minutes moderate exercise (M10), and a randomly permuted exposure (Epm). Bolded estimates are significant.
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instances (i.e. estimate of 0.125 versus true interaction variance of
0.1 or 0.0).

Recovery of interaction and heritability variance according to
SNP marginal and interaction effects
The presence of significant GxE with WHR prompted additional
questions. First, do GxE interactions arise from SNPs strongly asso-
ciated with the outcome of interest, as has been commonly assumed,
or are the variants contributing to GxE interactions independent from
those with marginal effects? To address this question, we randomly
split participants into a discovery set comprising 80% of participants
(260,768 individuals) with the remaining 20% of participants (65,222
individuals) comprising the validation set. Using the eight outcomes
with significant GxE interaction variance (no further analyses were
conducted with outcomes having non-significant GxE interaction var-
iance), we conducted univariate linear regression on the discovery set
using each outcome and a single SNP as the predictor variable,
repeating this process for all SNPs (i.e. 1,030,579 SNPs) used in the
study and calculating PG, the association p-value. We then selected
SNPs according to six association PG thresholds: <1 (i.e. all SNPs), <10−1,
<10−2, <10−3, <10−4, <10−5. Likewise, we tested each SNP individually for
interaction with WHR in the discovery set. We selected interactions
based on six discovery PGE thresholds: <1 (i.e. all SNPs), <10−1, <10−2,
<10−3, <10−4, <10−5. Each SNP set was then tested for variance explained
with the corresponding outcome in the validation set, using the least
number of blocks possible while keeping n > 10m. We evaluated R2

GW

and R2
GWEI for each of the eight significant outcomes at each of the six

association PG or PGE thresholds in the SNP validation sets. R2
GW and

R2
GWEI were then compared to the variance explained when including

all SNPs (i.e. PG < 1 or PGE < 1) in the validation set. We estimated the
proportion of R2

GW or R2
GWEI in the validation set (R2

G�val: and
R2

GE�val:) recovered when including an increasing proportion of SNPs
in the analysis (Fig. 4; Supplementary Figs. 4 and 5).

We observed that between 42–67% of the original R2
G�val: calcu-

lated in the validation set could be recovered with strongly associated
marginal SNPs, defined as PG < 10−5 in the discovery set. When
extending to more weakly associated SNPs (PG < 10−1), we observed
that between 72–89% of R2

G�val: was recovered. Additionally, R
2
G�val:

recovery when calculating from SNPs with strong or weak interactions
in the discovery sample (PGE < 10−5 and PGE < 10−1, respectively) was
consistently lower as compared to their respective PG thresh-
olds (Fig. 4a).

We then similarly estimated the proportion of interaction var-
iance (R2

GWEI) recovered when including an increasing proportion of
SNPs, based on discovery PG or PGE (Fig. 4b; Supplementary Figs. 4
and 5). We observed that between 1–2% of the original R2

GE�val: cal-
culated in the validation set was recovered by SNPs with strong
interactions in the discovery set (PGE < 10−5). Conversely, 3–28% of the
original R2

GE�val: was recovered by SNPs with strong marginal asso-
ciations (PG < 10−5). When extending to more weakly associated SNPs,
between 15–84% of R2

GE�val: was recovered by SNPs with weak mar-
ginal associations (PG < 10−1); and between 30–84% of R2

GE�val: was
recovered by SNPs with weak interactions (PGE < 10−1).

Polygenic scores analysis
Finally, we examined if the predictiveness of polygenic score of all
eight outcomes with significant WHR interaction variance could be
improved by incorporating interactions. To select SNPs and interac-
tion effects to be included in each PS, we used both PG and PGE

thresholds of 10−2, 10−3, 10−4, and 10−5 in the discovery set when testing
either each SNP individually or both a single SNP and corresponding
interaction, respectively. Each PS was then tested in the validation
sample for association with its corresponding outcome, with twenty
total PG and PGE combinations. PS prediction R2 was slightly improved
(p < 0.05 for improvement) by incorporation of interaction effects forTa
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the outcome with the highest interaction variance, CRP (Supplemen-
tary Fig. 6), with the relative increase in prediction R2 ranging from0%
to 1.3% across the outcomes analyzed (for interaction significance
thresholds of 10−4, 10−5; SupplementaryData 1). The largest increases in
polygenic score predictiveness tended to occur in outcomes with the
largest GxE variance observed (Fig. 3; Supplementary Fig. 6).

Discussion
In this report, we developed a method, MonsterLM, to estimate var-
iance explained by genome-wide interactions with environmental
exposures. Using simulations, we verified that MonsterLM estimates
the variance explained by interaction effects accurately and precisely.
Analysis of UK Biobank data demonstrated the presence of significant
GxE effects withWHR, amarker ofmetabolically deleterious adiposity.
The interaction estimates for 8 of the 13 outcomes analysed were
significant, ranging from 0.01 to 0.07 of overall variance, prompting
further analyses into these results. The presence of significant GxE was
further supported by the recovery of GxE with an exercise exposure,
M10. MonsterLM was also successfully applied to dichotomous out-
comes and exposures through simulations and real data. Together,
real and simulated data analyses demonstrate the robustness of
MonsterLM against biases such as collider effects or LD, and validates
its utility as a versatile, fast and unbiased method for estimation of
gene-by-environment interaction effects on biobank-scale datasets.

In benchmarking analyses, MonsterLM heritability estimates were
consistent with alternative state-of-the-art methods (Table 3). When
comparing MonsterLM GxE estimates to those of mtg2, MonsterLM

tends to be conservative but provides accurate and consistent esti-
mations across simulations and plausible estimates in real data. While
mtg2 is also accurate and precise inmost instances, it can be limited by
computational burden, consistency in simulation estimates, and
plausibility for some real data estimates. When comparingMonsterLM
GxE estimates to LDSC GxE, MonsterLM estimated 8 of 11 outcomes to
be non-null and LDSC GxE estimated 7 of 11 outcomes to be non-null.
LDSC GxE estimates ranged from 0–1.8% and were lower than Mon-
sterLM for each outcome (as was consistent with LDSC heritability
estimates versus MonsterLM, Bolt, and GRE). Some LDSC GxE advan-
tages include the fast computational speed of summary-level statistics
compared to individual-level data and robustness to stratification and
common environmental effects. However, the potential for LDSC
underestimation is a discussed limitation in the literature. For exam-
ple, Evans et al., 201812 conducted a heritability model comparison
study where they showed a limitation of LD score regression was its
potential to underestimate h2 if the trait is not highly polygenic (such
as in the case of total bilirubin; Table 3). Furthermore, consistently
smaller LDSCh2 estimates have been shownwhen compared toGREML
in the same data set26 and as the lowest estimate in a recent protocols
study compared to 10 other approaches (including GREML, LDAK,
threshold GRMs, and SumHer)27.

When extending the comparison to the state-of-the-art, Mon-
sterLM provides distinct advantages over current methods for GxE
analysis (Table 4)28–36. Several key advantages compared to other
methods include: (i) computational efficiency (with two options in
CPULS and GPULS) with biobank-scale individual-level data, (ii) no
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Fig. 4 | Proportion of R2
G�val: and R2

GE�val: as a function of PG and PGE. a The
proportion of total R2

G�val: recovered in the validation set at discovery sample
PG < 10−5, PGE < 10−5, PG < 10−1, and PGE < 10−1 for the eight outcomes with significant
interaction variance. b The proportion of total interaction R2

GE�val : recovered in
the validation set at discovery sample PG < 10−5, PGE < 10−5, PG < 10−1, and PGE < 10−1

for the same outcomes. Percentages represent the proportion of variance recov-
ered with regressors built from labelled association predictors compared to
regressorswith all SNPs.MonsterLMestimates in the validation setwere conducted
with 65,198 individuals and 1,030,579 SNPs after quality control. Source data are
provided as a Source Data file.
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model specification beyond using additive genetic coding, (iii) exten-
sibility to dichotomous exposures and outcomes, and (iv) and
demonstrated genome-wide robustness. In many settings, inference
methods for genome-wide SNP-heritability andGxEmake assumptions
about genetic architecture. These assumptions are parametrized by
polygenicity (the number of variants with effects) and MAF/LD-
dependence (the coupling of effects with MAF, LD or other functional
annotations). Since the true genetic architecture of any given trait is
unknown, existing heritability methods may yield vastly different
estimates even when applied to the same data10–12. This is also the case
for the estimation of genome-wide environment interactions, where
different assumptions about the structure of interactions result in a
variety of different estimates29–33. Althoughmulti-componentmethods
that stratify SNPs by LD/MAF can address these robustness issues,
fitting multiple variance components to biobank-scale data is highly
resource intensive37, and this problem is compounded when con-
sidering interactionswhere the number of variables analyzed increases
two-fold. Alternate methods that explicitly model these dependencies
are also sensitive to model misspecification9–13. Conversely, Mon-
sterLM assumes an additive genetic model and does not apply further
parametrization for underlying assumptions.

Significant GxE with WHR was observed for 8 of the 13 outcomes
studied. Interaction effects withWHR ranged from0.009 to 0.071, and
in all cases were of smaller magnitude than their heritability counter-
parts. These results have important implications for future research.
First, our observations suggest that GxE can contribute significantly to
complex trait variance. Second, genetic associations are likely to be
heterogenous when comparing populations with dramatically differ-
ent obesogenic environmental exposures. The observation that a
majority of GxE effects do not come from SNPs with strong marginal
effects suggests this may not impact top GWAS hits excessively. We
also observed the presence of significant directionality effects for
marginal effect SNPs and their associated interaction effects, which
suggest an overall greater impact of genetic variation under certain
environmental conditions. There are also potential clinical implica-
tions for these observations. For instance, CRP reflects low-grade
inflammation and is strongly associated with risk of CVD38. Our results
suggest that genetic determinants of low-grade inflammation are
dependent on adiposity distribution (WHR) and further research will
be needed to understand the implications for CVD risk.

Our results also provide some further insights into why identifi-
cation ofGxEhasbeen challenging.Manyprior studies have reasonably
focused the search for GxE on variants with genome-wide significant
marginal effects. Our results show that amajority ofGxE effects are due
to variants with unremarkable marginal effects (i.e., only 3–28% of GxE
variance recovered by SNPs with strong marginal effects), although
variants with strong marginal effects remain preferred candidates for
GxE interactions. We also show in a proof-of-concept analysis that
incorporation of GxE can improve PS prediction, albeit very modestly.

Some limitations are worth mentioning. First, we quantile nor-
malize all traits before analysis, and while this protects against
potential scaling effects and is robust to nonnormal-distribution types,
it could also bias results towards the null39. Second, in the event of
collider effects with a covariate that is heritable through additive and
heterogenous elements there could be some inflation of heritability
estimates (Fig. 2; scenario 12). However, the conditions for this sce-
nario are presumed to be quite extreme and did not affect GxE esti-
mates. Furthermore, GxE estimates have been shown tobe stablewhen
modelling collider biases whereas genetic estimates are less well-
controlled40. Third, information may be lost through LD pruning and
from filtering rare and low frequency variants (MAF < 5%). Fourth,
MonsterLM is susceptible to overestimating GxE variance when parti-
cipant phenotypic and exposure missingness co-occurs in the same
individuals. Fifth, the liability scale transformation for dichotomous
outcomes could bias GxE estimates under specific conditions such as

violation of the normality assumption needed for the Robertson
transformation (i.e. can occur in really large interaction estimates), if
substantial non-additive effects exists34, or biases towards the null due
to information loss in the transformation.

In this report, we have developed a robust and well-controlled
method for genome-wideGxE estimation.We established the presence
of GxE in cardiometabolic traits. We observed that SNPs with weak
marginal and interaction effects contribute to the majority of GxE
variance. MonsterLM makes minimal assumptions about genetic
architecture and is well-powered for both continuous and dichot-
omous outcomes. It is computationally efficient, robust, and versatile
and can be used as the basis for future analyses of genome-wide
environment interactions.

Methods
UK Biobank
The UK Biobank is a large population-based study which includes over
500,000 participants living in the United Kingdom41,42 (https://www.
ukbiobank.ac.uk/). Men and women aged 40–69 years were recruited
between 2006 and 2010, and extensive phenotypic and genotypicdata
were collected. Quality control of genotype data was applied for
individual and SNP inclusion using PLINK version 1.9 (https://www.cog-
genomics.org/plink2/). We selected 325,989 unrelated British indivi-
duals (the largest unrelated cohort; 54% female and 46% male) from
the UK Biobank with both genotype and trait data for inclusion in the
analysis. An unrelated set of individuals were chosen to reduce geno-
micprediction inaccuracies43. Individual exclusion criteria included: (1)
non-white British ancestry, (2) high ancestry-specific heterozygosity,
(3) high genotype missingness (>0.05), (3) mismatching genetic
ancestry, (4) sex chromosome aneuploidy, (5)mismatching gender sex
and genetic sex, and (6) consent withdrawal at the time of analy-
sis. Variants from the release version 3 of the UK Biobank data were
used, which included those present in the Haplotype Reference Con-
sortium and 1000 Genomes panels with imputation quality > 0.7 and
had no deviation from Hardy-Weinberg equilibrium (P > 1 × 10−10)42.
Our study focussed only on common variants; thus, genotypes were
filtered by removing highly correlated SNPs with an LD r2 > 0.9 and
removing SNPs with a MAF <0.05. SNP exclusion criteria included: (1)
SNPs with low imputation quality (INFO score ≤0.30), (2) call rate
<0.95, and (3) ambiguous or duplicated SNPs. After all quality control
(QC) filters, 1,030,579 SNPs and 325,989 individuals remained. Genetic
variants were partitioned to minimize the number of blocks on each
chromosome, with each block having a maximum SNP count of
25,000. Genotypes were standardized to have a mean of zero and
standard deviation of one. We examined eleven continuous traits and
two (dichotomous) cardiometabolic outcomes including: Apolipo-
protein A, Apolipoprotein B, Total Cholesterol, C-reactive protein
(CRP), Glucose, HbA1c, HDL-Cholesterol, LDL-Cholesterol, Triglycer-
ides, Total Bilirubin, height, coronary artery disease (CAD) and Type 2
Diabetes (T2D). WHR, an exercise parameter, smoking status, and a
randomly generated exposure were used as environmental exposures
(E) to quantify GxE interactions.

For follow-up analyses, and to avoid the potential for overfitting
from sample overlap44, we randomly partitioned the UK Biobank par-
ticipants into two sets: a discovery set containing 80% of the partici-
pants used for model building and a validation set containing the
remaining 20% of the participants.

MonsterLM estimations of variance explained by GxE effects
MonsterLM estimates heritability (G) and GxE effects in three steps
outlined in Fig. 5. This can be performed using three variable-type
combinations: continuous exposures and outcomes, dichotomous
exposures and continuous outcomes, and continuous exposures and
dichotomous outcomes. Slightly different configurations of Mon-
sterLMareuseddependingon the variable-type combination. Stepone
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processes exposure, outcome, interaction, and genotype data; step
two calculates the coefficients of determination (R2); and step three
calculates the estimated G and GxE with confidence intervals.

Step one: genotype and phenotype input and quality control
The standard linear model for an outcome, Y , when an interaction
term is included can be expressed as:

Y =βGG+βEE +βGEGE + ϵ ð1Þ

Where G is the standardized genotype matrix, E is the quantile
normalized environmental exposure, GE is the product between each
genotype matrix and environmental exposure, resulting in a matrix
with the same dimensionality as G. G is coded in the additive model
({0,1,2}) and standardized so that the mean = 0 and standard deviation
= 1 for each SNP.GE is the quantile normalized product ofG and E. The
betas (β) represent the true marginal effects associated with their
respective term and ϵ represents the random error term. In practice,
participants are selected to avoid missing data in Y and E. Both Y and E
are first quantile normalized, then regressed for age, sex, and popula-
tion stratification (first twenty genetic principal components), and

quantile normalizedoncemore. Twomore transformations are applied
to Y: (i) regression of the processed E then quantile normalization; (ii)
and a heteroscedasticity adjustment for continuous outcomes. The
aforementioned processing assumes continuous Y and E variables.

Step two: calculating the coefficients of determination
Wedenote thematrix ofG orGE asU with dimensions n×m, where n is
number of participants and m is number of SNPs:

U =G,or U =GE ð2Þ

As the environmental exposure is residualized from Y, we can
leave E out of the model.

The standard linear model becomes:

Y =βUU ð3Þ

Given Y , the least squares estimate for β̂U is:

β̂U = UTU
� ��1

UTY ð4Þ

Fig. 5 | TheMonsterLMmethod split into three steps for continuous outcomes
and exposures.The first step describes data processing, the second step describes
methods of computing least squares, and the third step describes how to finalize
estimates and compute confidence intervals. Sections outlined by blue, red, or

green are transformations only to be applied with that variable-type combination
described in the footnote. E: exposure matrix; Y: outcome matrix; G: genotype
matrix; GxE: interaction matrix. N; number of participants; M; number of SNPs;
mmax: maximum number of SNPs to be partitioned genotype matrix.
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After computing β̂U , the predicted values of Y denoted as ŷ, are
given by:

ŷ= β̂UU ð5Þ

MonsterLM enables multiple linear regression on biobank-scale
datasets by parallelizing the calculation of least squares regression. The
calculation is done such that the only practical limitation is the speed of
the inversion of the UTU matrix, without any restriction on n. This
limitation is circumvented using the conjugate gradient method and
GPU acceleration (henceforth referred as GPULS; Supplementary
Table 8 21). If users are constrained by GPU hardware but have adequate
RAM allocation (>200 GB RAM) then a CPU-least squares method
(henceforth referred asCPULS) canbeused to compute traditional least
squares in parallel to estimate block-wise R2 (Fig. 5; Step 2). MonsterLM
assumes an additive genetic model but does not make further
assumptions regarding genetic architecture (such as polygenicity of
effects, MAF and LD). Genotypes are partitioned into blocks with a
maximal size of 25,000 SNPs (m) to minimize LD spillage between
blocks and to optimize speed of the matrix calculation.

Step three: calculating total genetic and interaction estimates
and confidence intervals
Once ŷ is calculated for each block i using either G or GE, both R2 and
adjusted R2 can be derived for additive genetic effects and interaction
effects, respectively. The total genome-wide contribution of additive
genetic effects (R2

GW ) and GxE interaction effects (R2
GWEI) is given by

summing adjusted R2 over all blocks:

R2
GW = ð1� R2

E,Y Þ
Xj

i= 1

R2
Gi

ð6Þ

R2
GWEI = ð1� R2

E,Y Þ
Xj

i= 1

R2
GEi

ð7Þ

Where j is the number of blocks used per analysis (i.e. 60 blocks
for current analyses) and 1� R2

E,Y is an adjustment to account for the
fact that Y is residualized for E. R2

E,Y is the coefficient of determination
of Y and E.

R2
Ui
is the adjustedR2 per block forGorGE, with n the sample size

and m the number of predictors. The 95% confidence (CI) of R2
Ui

can
be estimated for each block by first calculating the variance of the
squared multiple correlation coefficient using Kendall and Stuart’s
method of variance estimation45 available as “Variance.R2” in the
MBESS46 R package where:

dVar1 R2
Ui

� �
= 1� R2

E,Y

� � n� 1
n�m� 1

� �2 n�m� 1ð Þðn�m+ 1Þ
ðn2 � 1Þ HyperGðR2

Ui
,n,mÞ

ð8Þ

and HyperGðR2
Ui
,n,mÞ is the asymptotic adjustment using the hyper-

geometric function discussed in section 2B of Stuart, Ord, and Arnold
(1999)45. The 95% CI for a single block, i = 1, can then be derived using
the Wald estimate:

95%CI =R2
Ui
± 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar R2
Ui

� �r
ð9Þ

To estimate the 95% CI for our genome-wide G or GxE estimate,
R2

GWU , we calculate the total asymptotic variance as the sum of the

individual variances ðR2
Ui
Þ for j blocks:

dVar R2
GWU

� �
=
Xj

i= 1

dVar ðR2
Ui
Þ ð10Þ

where dVar R2
Ui

� �
is each i variance estimate from Eq. (8). For the total

asymptotic variance estimated, we calculate the 95% CI of R2
GWU as:

95%CI =R2
GWU ± 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar R2
GWU

� �r
ð11Þ

MonsterLM for dichotomous outcomes and exposures
Applying MonsterLM with dichotomous exposures and continuous
outcomes uses the same algorithmaswith continuous variables (Fig. 5)
with a few key modifications. These include: (i) no exposure mod-
ification (Step 1: E), (ii) the continuous outcome is quantile normalized
in each dichotomous group separately (referred to as “E stratified QN
Y”) in Step 1, and (iii) standardizing (μ=0, σ = 1) the interaction (GxE)
terms (Step 1).

MonsterLM can also be applied to dichotomous outcome vari-
ables and continuous exposures (Fig. 5) with the following mod-
ifications: (i) the continuous exposure in each dichotomous outcome
group is quantile normalized separately (referred to as “Y stratified
QN E”); (ii) standardizing (μ=0, σ = 1) the dichotomous outcomes
(Step 1; Y), and (iii) and applying a liability scale transformation47 on
the total estimates (Step 3) (Fig. 5).

Validation of MonsterLM using simulations
MonsterLMwas tested using simulations under a range of scenarios. In
all simulations, “real” genotypes from 325,989 UK Biobank participants
(as described below) were used and outcomes and exposures were
simulated. Unless otherwise stated, outcomes and exposures were
simulated assuming true (unobserved) effects (βG,βE ,βGE) following a
standard normal distribution. 20% of SNPs were randomly selected to
have a marginal effect on the simulated trait of interest, Ysim (i.e.
βG ≠0). We further assumed that 2% of total SNPs have an interaction
effect (i.e.βGE ≠0). The error (ϵ)was sampled froman independent and
identically distributed standard normal distribution. The simulated
trait ðYsimÞ and simulated exposure (Esim) were then computed as:

Ysim =βGG+βEEsim +βGEGEsim + ϵ ð12Þ

We tested 12 scenario conditions through simulations (Fig. 1; top
panel). Twomodel types, “base” and “collider”were considered. Firstly,
basemodel simulations considered that Ewas not dependent onG (i.e.
E is not heritable) and the genetic and interaction effects for all SNPs
were randomly generated from a standard normal distribution. Sec-
ondly, we considered models including a collider bias. A collider bias
canoccurwhen two conditions aremet: a controlled-for environmental
exposure is both heritable and influenced through an unobserved
confounder; and that same unobserved confounder influences the
outcome (Fig. 1; top panel). As shown in Aschard et al. 201548 and
Akimova et al., 202140, a collider bias can potentially lead to over-
estimation of GxE variance and other variance components. Collider
model simulations hada set correlationR2 between Ysim and Esim of0.2
and assumed that the correlation was entirely due to the simulated
unobserved confounder covariate (UCsim), an extreme collider model
(Fig. 1; top panel). In these scenarios, Esim was simulated to have 20% of
its variance explained by additive genetic effects (i.e. heritability of
Esim), as WHR was observed to have similar heritability empirically. In
one collider scenario, genetic heterogeneity (which has been explored
in the context of GxE models49), explained 20% of the genetic variance
of Esim (with the remaining genetic variance of Esim explained by
additive genetic effects). Genetic heterogeneity was simulated by
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including a genetic interaction with a randomly generated binary
variable. Genome-wide simulated varianceswere set atR2

GW =0.20 (i.e.
heritability of Y), and R2

GWEI =0.1 or 0.0 (i.e. interaction variance of Y).
In base model simulations, observed correlations between E and Y are
due to the true set value (i.e. causal effect of E on Y). In collider simu-
lations, there is no causal effect of E on Y or Y on E such that any
observed correlation is entirely due to the collider bias.

For each simulated scenario, ten simulations were performed
(Fig. 2; legend). Scenarios 1–8use the basemodel format and scenarios
9–12 use the collider model format. The complete set of scenarios
include: (i) null GxE effect (R2

GWEI =0.0); (ii) non-null GxE effect
(R2

GWEI = 0.1); (iii) non-null GxE effect with non-null exposure variance
(R2

E on Y = 0.1); (iv) non-null GxE effect where all βGE effects are sam-
pled from SNPs in the highest LDscore37 quartile; (v) non-null GxE
effect where all βGE effects are sampled from SNPs in both the highest
LDscore quartile and lowest MAF quartile; (vi-vii) non-null GxE effect
when sampled βGE effects have exponential and beta distributions
(positive kurtosis); (viii) non-null GxE effect with a dichotomous
exposure; (ix) non-null GxE effects in a collider scenario; (x) non-null
GxE effect in a collider scenario where βGE effect SNPs were not an
element (completely non-overlapping) of βG effect SNPs; (xi) null GxE
effect in a collider scenario where βGE effect SNPs are a strict subset
(completely overlapping) ofβG effect SNPs; and (xii) null GxE effect in a
collider scenario where Esim is heritable through additive and hetero-
genous genetic effects.

MonsterLM robustness was further investigated by testing the
impact of mean imputation for both the Esim and Ysim. We examined
scenarios with mean imputation of Esim only, Ysim only, and Esim and
Ysim within the same participants to further address any biases in
model design. The previously described scenario 2 conditions were
used for these latter simulations.

MonsterLM performance was also validated with dichotomous
outcomes in scenario 2 conditions. Genome-wide simulated variances
were set at R2

GW =0.20 (i.e. heritability of Y), and R2
GWEI = 0.0 (i.e.

interaction variance of Y) to assess for type I error.

Applying MonsterLM to UK Biobank traits and exposures
The MonsterLM method was applied to 13 outcomes from the UK Bio-
bank in 325,989 unrelated British participants. The tested outcomes
were clinically pertinent blood biomarkers, major diseases, and height
(a well-studied heritable outcome). MonsterLMwas applied as outlined
in Fig. 5. Four different exposures were tested in total: WHR, days of at
least 10minutes moderate weekly physical activity status (M10),
smoking status, and a randomly permuted exposure.WHRwas selected
as an environmental exposure because it is ameasure of central obesity
linked to a wide range of adverse metabolic consequences, including
diabetes andcardiovasculardisease (CVD)50.M10was selecteddue to its
relevance as an obesogenic risk factor but minimal to negligible esti-
mated additive genetic variance and correlation with outcomes
(R2

G,E =0.02, R
2
E,Y range from 0.00 to 0.01). This serves as a suitable

control to reduce the possibility that any spurious collider effects or
additive genetic effects would explain any of the interaction variance.
Smoking status was chosen as a dichotomous exposure51,52. Lastly, a
permuted exposure was added as a negative control of no interaction.

Directionality of effects analysis
After computing R2

GW and R2
GWEI for our 13 outcomes, we tested

whether the direction of effects was concordant betweenmarginal and
interaction regression coefficients for each SNP in the significant eight
outcomes. Concordant direction of effects is defined as when β̂G has
the same sign (+/+, −/−) as β̂GE for a single SNP and its associated
interaction. Discordant direction of effects is defined as when the β̂G

and β̂GE have a different sign (+/−, −/+) for a single SNP and its asso-
ciated interaction. We used a subset of β̂G and β̂GE coefficients that
were in low LD (r2 < 0.1) and computed the direction of effect

concordance for this subset. We then plotted the sign concordance
twice: first as a function of univariate β̂G p-values ðPGÞ, then as a
function of univariate β̂GE p-values ðPGEÞ, which were computed from
association of single SNPs and their respective interaction on the
outcomes. Two-proportion Z-tests were used to compare the pro-
portion of directionally concordant marginal and interaction effects
for each outcome in each threshold compared to a null propor-
tion of 0.50.

Stratification of estimates by MAF and LD
SNPs were stratified by MAF and LDscore into a total of twenty bins:
five MAF bins (0.05 ≤0.1, 0.1 <MAF ≤0.2, 0.2 <MAF ≤0.3,
0.3 <MAF ≤0.4, and 0.4 <MAF ≤0.5) and four LDscore quantiles
(0 < LD ≤0.25, 0.25 < LD ≤0.50, 0.50 < LD ≤0.75, and 0.75 < LD ≤0.9).
MAF and LDscore were calculated using a subset of 5000 participants
from the UK Biobank. We then computed the variance explained
(R2

GW ,R2
GWEI) and divided each estimate by the total number of SNPs

in each bin to get anR2 per SNP value thatwas compared between bins
and to the total genetic and interaction variance estimates.

Polygenic scores analysis
We calculated polygenic scores (PS) without interactions ðPSGÞ for
outcomes with statistically significant GxE variance. We first selected
SNPs based on the univariate association p-value from regression of
each variant with outcomes from the discovery set (randomly chosen
80% of UK Biobank sample).We then combined the selected SNPs into
a single block from the discovery set and applied MonsterLM regres-
sion to obtain the multiple linear regression coefficients (β̂G). Using
these coefficients, we calculated the PSG in the validation set as:

PSG,i =
XO
j

Gi,jβ̂G,j ð13Þ

Where PSG,i is the individual polygenic score of participant i, j is the
SNP number and O represents the total number of SNPs included in
this analysis. We then evaluated the predictiveness of each PSG using
R2 in the validation set (remaining 20% of the UKB sample). We repe-
ated the sameprocess for four univariate PG thresholds (10−2, 10−3, 10−4,
10−5) for each outcome.

We define PSGE as the PS with GxE interactions included. To
include GxE interactions, we selected significant interactions based on
the univariate association p-value from regressing each GxE interac-
tion with outcome concentration in the discovery set. These interac-
tions are selected from the subset of SNPs included in polygenic scores
without interactions. The interactions passing the univariate PGE

thresholds (10−2, 10−3, 10−4, 10−5) were then included with the SNPs to
create a single block. We applied MonsterLM regression to obtain the
multiple linear regression coefficients (β̂G, β̂GE). Using these coeffi-
cients, we calculate the PSGE as:

PSGE,i =
XO
j

Gi,jβ̂G,j +
XP
k

GxEð Þi,k β̂GE,k ð14Þ

Where PSGE,i is the polygenic scorewith interactions incorporated
for participant i, summed over each SNP (j) and, if included, its asso-
ciated interaction (k).O represents the SNPs included in thePSGE , while
P represents the interactions included, a subset of O. As with the PSG,
we evaluated thepredictivenessof eachpolygenic score usingR2 in the
validation set.We repeated for all pairwise combinations of the four PG

thresholds and the four PGE thresholds, resulting in 16 PSGE for each
outcome in addition to four PSG.

Comparison with other methods
We compared MonsterLM estimates to alternative methods. For her-
itability, MonsterLM estimates were compared to BOLT53 (https://
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alkesgroup.broadinstitute.org/BOLT-LMM/BOLT-LMM_manual.html)
and GRE17 (https://github.com/bogdanlab/h2-GRE). MonsterLM herit-
ability and GxE estimates were compared with mtg2 IGE28 (https://bio.
tools/mtg2) and LDSC37 (https://github.com/bulik/ldsc).

Power calculations
Statistical power was estimated using sets of 10,000 simulations. Non-
central F-distributions were used to simulate the observed genetic and
interaction effects at each genotype block, and genome-wide herit-
ability and GxE estimates derived as previously described. True set
adjusted R2 ranged from 0.05 to 0.5. Sample size ranged from
N = 50,000 to 400,000 individuals by increments of 10,000. For each
condition, power was defined as the proportion of observed p-values
less than 0.05 out of the 10,000 simulations.

System requirements
MonsterLM software (Supplementary Software 1) can be run on all
major platforms (e.g. GNU/Linux,macOS,Windows). For biobank-scale
analyses, recommended hardware requirements are a unix-like virtual
environment supporting a minimum of 250 GB RAM space for in-
memory operations. System GPUs are optional and can be used to
speed up matrix inversion. Software requirements include the pro-
gram dependencies: BASH (≥5.0), R (≥3.6.3), and GPULS (optional).
Essential R dependencies include the packages: tidyverse, data.table,
MBESS, and gsl.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This research has been conducted using individual genetic and phe-
notypicdata obtained from theUKBiobank (http://www.ukbiobank.ac.
uk/), under application #15255. The UK Biobank study received
approval from the National Health Service National Research Ethics
Service North West. Access to the UK Biobank individual-level data is
not publicly available andmust be obtained via an application (https://
www.ukbiobank.ac.uk/register-apply/). All other data supporting the
findings described in this manuscript are available in the article and its
Supplementary Information files. Source data are provided with
this paper.

Code availability
The software package containing all code and relevant documentation
to run MonsterLM is available in a public GitHub repository at https://
github.com/GMELab/MonsterLM (Supplementary Software 1; https://
zenodo.org/record/8092995)54.
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